An Investigation of the Low Oxidation State Chemistry of Rhenium in the BaO-Re-Re₂O₇ Phase Diagram

A. K. CHEETHAM AND D. M. THOMAS

University of Oxford, Chemical Crystallography Laboratory, 9 Parks Road, Oxford, OX1 3PD, England

Received August 12, 1986; in revised form January 5, 1987

The first systematic survey of the BaO-Re-Re₂O₇ phase diagram is reported, with emphasis on the reduced ternary oxides. At 800°C, the previously reported compounds Ba₃Re₂O₉, Ba₂ReO₅, and Ba₃ ReO₆ were observed, all of which contain Re(VI) in ReO₆ octahedra. The stability of these phases is apparently due to Re-O π -bonding in and between the octahedra. The previously unknown structure of Ba₂ReO₅ was determined by powder neutron diffraction and found to be isotypic with that of K₂VO₂F₃ (space group *Pnma*), with a = 7.3233(2), b = 5.7745(1), and c = 11.4124(2) Å. ReO₆ octahedra share adjacent corners to produce cis chains which are held together by 10 coordinated Ba atoms. © 1987 Academic Press, Inc.

Introduction

The phase diagram for the Ba-Re-O system has not been reported in the literature, and although some data on compound formation within the system are available, few details are given. Here we report a systematic study carried out at 800°C under an inert atmosphere. Particular interest was paid to those ternary oxides containing rhenium in an oxidation state of less than seven.

Recently there has been growing interest in solid-state compounds containing discrete or condensed clusters of transition metal atoms. Molybdenum, which exhibits many of the chemical characteristics of rhenium, forms tetranuclear metal atom clusters in Ba_{1.14}Mo₈O₁₆ (1) and K₂Mo₈O₁₆ (2), while infinite chains of edge-sharing Mo₆ octahedra are found in Ba_{0.62}Mo₄O₆ (1) and NaMo₄O₆ (3). Low-valency rhenium is known to form metal-metal bonds in one of two basic units, Re_2O_{10} and Re_2O_8 , which occur in the Ln-Re-O (Ln = lanthanide) systems (4); the former also occur in BiRe₂ O₆ (5). However, other reduced rhenium compounds such as Ba₃Re₂O₉ (6), Cd₂Re₂O₇ (7), PbReO₃ (8), and PbRe₂O₆ (9) do not contain metal-metal bonds.

Ba₃Re₂O₉ is the only ternary oxide in the Ba₋Re₋O system to have undergone full structural characterization. It has a perovskite-related structure based on a nine-layer sequence of close-packed BaO₃ layers (*chhchhchh*). Other rhenium (VI) compounds that have been reported in this system (10) are Ba₂ReO₅, which Scholder claims to be isomorphic with Ba₂XO₅ (X =Te, Mo, W, or Os), Ba₃ReO₆, which is an ordered perovskite, and the rhombohedral phase Ba₃ReO₆ · 0.3BaO. BaReO₄ is mentioned in the literature (11) but with little supporting evidence.

Scholder (12) has also investigated the

BaO-Re₂O₇ phase diagram. Three different rhenium (VII) compounds were observed: Ba(ReO₄)₂, Ba₃(ReO₅)₂, and Ba₅(ReO₆)₂. The orthoperrhenate, Ba₅(ReO₆)₂, is thought to have a perovskite-related 24layer structure (13) and the mesoperrhenate, Ba₃(ReO₅)₂, appears to be isostructural with the rhenium apatites, Ba₁₀ (ReO₅)₆X₂ (X = F, Cl, Br, I, or $\frac{1}{2}$ CO₃) (14).

Experimental

The BaO-Re-Re₂O₇ phase diagram was investigated at the compositions shown by open circles in Fig. 1. Conventional methods of solid-state synthesis were employed. The starting materials used were Re metal, ReO_2 , $Ba(ReO_4)_2$, $Ba_5(ReO_6)_2$, and $BaCO_3$. The reactants were weighed out to the nearest milligram and ground together in an agate mortar, the total weight of each reaction mixture being 0.5 g. Where BaCO₃ was present, the reaction mixture was placed in a recrystallized alumina boat and heated to 800°C for 24 hr in an electric tube furnace under a stream of Ar gas. In all other cases, the reaction mixtures were heated for a day at 800°C in evacuated, sealed, fused-silica tubes in an electric muffle furnace.

All chemicals used were of reagent grade or better. Commercially available Re metal powder and BaCO₃ were used directly, and ReO₂ was prepared by thermolysis of NH_4 ReO₄ under vacuum (15). The perrhenate was prepared by the reaction

$$Ba(OH)_2(aq) + 2NH_4ReO_4(aq) \rightarrow Ba(ReO_4)_2(s) + 2NH_3(g) + 2H_2O(l)$$

and the orthoperrhenate (12) by the solidstate reaction

$$Ba(ReO_4)_2(s) + 4BaCO_3(s) \xrightarrow{1200^\circ C} Ba_5(ReO_6)_2(s) + 4CO_2(g).$$

X-ray powder patterns of the final products at various points in the phase diagram were recorded on a Philips PW 1710 diffractometer, and the barium to rhenium ratios of individual crystallites in a product mixture were obtained using a JEOL 100CX-**TEMSCAN** analytical electron microscope with a KEVEX Li-drifted silicon energydispersive X-ray detector. The "ratio method" for thin crystals described in detail by Cheetham and Skarnulis (16) was employed. The Ba-L α and Re-L β_{1+2} X-ray emission lines of $Ba(ReO_4)_2$ were used to calculate the calibration constant, k, in the equation $x_{Ba}/x_{Re} = k(I_{Ba}/I_{Re})$, where x_{Ba} , x_{Re} , I_{Ba} , and I_{Re} represent, respectively, the concentrations and X-ray emission intensities of the two species. Analysis of 30 crystallites of $Ba(ReO_4)_2$ gave a value of 0.728(9) for k. Here and throughout this paper the number in parentheses is the estimated standard deviation (e.s.d.) in the last figure.

A neutron scattering experiment was performed on 6 g of Ba₂ReO₅ powder prepared by the reaction

$$4Ba_{5}(ReO_{6})_{2}(s) + Re(s) + ReO_{2}(s) \rightarrow 10Ba_{2}ReO_{5}(s).$$

The reaction was carried out in a sealed silica tube by heating to 800°C for 1 day, and the diffraction profile over the range 6° $\leq 2\theta \leq 144^{\circ}$ was recorded over a period of 6 hr at room temperature, using the instrument D1a at ILL Grenoble operating at a wavelength of 1.909 Å with a 2 θ step size of 0.05°. Electrical resistivity measurements were made on pellets of Ba₂ReO₅ (13 mm diameter \times 1.5 mm thickness). A two-probe method was used and the results obtained were only qualitative in nature.

Infrared spectra of the separate reduced barium rhenium oxides suspended in CsI disks were measured on a Pye Unicam SP2000 infrared spectrometer in the region $200-4000 \text{ cm}^{-1}$.

Results and Discussion

This study represents the first definitive survey of the BaO-Re-Re₂O₇ system and

FIG. 1. The proposed BaO–Re–Re₂O₇ phase diagram at 800°C. Compositions investigated in this study are shown by open circles and solid circles represent the phases found in the system. The observed tie lines are shown by continuous lines, whereas broken lines indicate tie lines proposed after careful examination of the results.

yields results that concur with some previous reports but disagree with others. The only reduced phases in the system are Ba₃ Re_2O_9 , Ba_2ReO_5 , and Ba_3ReO_6 , all of which contain Re(VI); further reduction leads to the formation of Re metal. No evidence for the existence of $Ba_3ReO_6 \cdot$ 0.3BaO (10) or BaReO₄ (11) was found.

The results of the synthetic work at 800°C are summarized in Fig. 1, and specific reactions and their products are given in Table I. Prolonged heating gave the same products, although reaction with the silica tube to give barium silicate occurred when the temperature was raised to 1000°C. Further verification that equilibrium had been reached was given by the fact that identical results were obtained when different reactants were used to attain the same starting composition.

The preparation and crystal structure of $Ba_3Re_2O_9$ have already been reported in the literature (6), so no further comment is necessary. Under atmospheric conditions, this

phase was completely oxidized to Ba_3 (ReO₅)₂ within a period of 4 months.

Ba₂ReO₅ containing traces of Re metal could be synthesized as a dark gray powder. The composition was confirmed by analytical electron microscopy: analysis of 23 crystallites gave a Ba/Re ratio of 2.01(5). As previously reported (17), the oxygen content has been studied using an analytical electron microscope equipped with an ultrathin window X-ray detector. In agreement with Scholder and Pfeiffer (10), the Xray powder pattern of this compound shows it to be isotypic with Ba_2XO_5 , where X = Te, Mo, W, or Os. The structure of these phases is unknown, but careful examination of the cell parameters and X-ray intensities indicates that they are isostructural with $K_2VO_2F_3$ (18), which is known to contain nonlinear chains of VO₂F₂F_{2/2} octahedra linked by cis-bridging fluorine atoms. The infrared spectrum of Ba_2ReO_5 (Fig. 2) shows strong absorption bands at 360 and 630 cm^{-1} , as expected for the bending and

	Conditions		
Reaction mixture	Temperature (°C)	Time	Products
$5BaCO_3 + ReO_2 + Re$	800	1 day	$BaCO_3 + Ba_3ReO_6 + trace$ Re + trace $Ba_3(ReO_5)_2^a$
$9BaCO_3 + Ba(ReO_4)_2 + ReO_2$	1000	Overnight	Ba_3ReO_6 + trace $BaCO_3$ + trace $Ba_3(ReO_5)_2^a$
$8BaCO_3 + Ba(ReO_4)_2 + ReO_2$	1000	Overnight	Ba_3ReO_6 + trace $Ba_3(ReO_5)_2^a$
$8BaCO_3 + Ba(ReO_4)_2 + ReO_2$	500	Overnight	$\mathbf{BaCO}_3 + \mathbf{Ba}_3(\mathbf{ReO}_5)_2$
$5Ba_5(ReO_6)_2 + Re$	800	3 days	$Ba_2ReO_5 + Ba_5(ReO_6)_2 + trace Ba_3ReO_6$
$2Ba_5(ReO_6)_2 + Re$	800	3 days	Ba ₂ ReO ₅
$Ba_5(ReO_6)_2 + Re$	800	3 days	Ba_2ReO_5
$4Ba_5(ReO_6)_2 + ReO_2 + Re$	800	1 day	Ba ₂ ReO ₅
$4Ba_2ReO_5 + ReO_2 + 3Re$	800	1 day	$Ba_3Re_2O_9 + Re + trace$ $Ba_2ReO_5 + trace$ $Ba_3(ReO_5)_2^a$
$Ba_5(ReO_6)_2 + Ba(ReO_4)_2 + 10Re$	800	1 day	Ba ₃ (ReO ₅) ₂ + Ba ₃ Re ₂ O ₉ + Re
$Ba_5(ReO_6)_2 + 2Ba(ReO_4)_2 + 3Re$	800	1 day	$Ba_3(ReO_5)_2 + Ba(ReO_4)_2 + trace Re$
$Ba(ReO_4)_2 + ReO_2 + Re$	800	1 day	$Ba(ReO_4)_2 + ReO_2 + Re$
$0.8BaCO_3 + 5ReO_2 + Re$	800	4 days	$Ba(ReO_4)_2 + ReO_2 + Re$
$Ba(ReO_4)_2 + ReO_2$	800	4 days	$Ba(ReO_4)_2 + ReO_2$
$BaO + ReO_2^b$	500	1 day	$Ba_3Re_2O_9 + Re$
$BaO + 2ReO_2^{b}$	600	1 day	$Ba_3(ReO_5)_2 + Ba(ReO_4)_2 + Re$
$BaO + 3ReO_2^b$	600	1 day	$Ba(ReO_4)_2 + Re + Ba$ silicate

	TABLE	I
--	-------	---

RESULTS OF THE INVESTIGATION OF THE BaO-Re-Re2O7 PHASE DIAGRAM AT 800°C

 a Ba_3(ReO_5)_2 is an oxidation product of both Ba_3ReO_6 and Ba_3Re_2O_9 under atmospheric conditions.

^b Experiments using BaO were discontinued due to difficulties in handling and reactivity with the walls of the silica reaction vessel.

stretching of ReO₆ octahedra (19). Thus the X-ray powder data for Ba₂ReO₅ (Table II) were indexed in the space group *Pnma* (as for K₂VO₂F₃) and the cell parameters refined by the least-squares method give values of a = 7.320(2), b = 5.775(1), and c = 11.412(3) Å.

Ba₃ReO₆ was the only other low-valency ternary oxide observed in this study. Electron microscope data from 18 crystallites in the dark gray product gave the Ba/Re ratio as 3.00(9), but attempts to confirm the oxygen content in this barium-rich phase failed due to fluorescence of the oxygen-K X-ray emission line by the Ba-M line (17). The Xray powder pattern (Table III) cannot be satisfactorily indexed on the basis of the tetragonal cell proposed by Sleight *et al.* (20) as the lines observed at $d_{obs} = 3.327$ and 2.209 Å remain unaccounted for, and

h1-1	d_{obs}	d_{calc}	(100I/I).	(100I/I)
	(A)	(A)	(1001/1 ₀)obs	(1001/1 ₀)calc
101	6.116	6.124	11	11
002	5.662	5.674	11	11
102	4.476	4.480	4	4
111	4.200	4.196	9	9
112	3.541	3.537	4	3
201	3.475	3.473	20	18
103	3.365	3.364	3	2
013	3.168	3.167	100	100
210)	3.078	∫3.082	41	∫29
202 J		\3.072		132
211	2.977	2.975	36	36
020	2.880	2.879	47	49
212	2.711	2.711	28	33
203	2.631	2.631	16	17
114	2.409	2.409	8	8
204	2.245	2.245	6	7
221	2.219	2.219	14	16
123	2.189	2.190	5	5
105	2.174	2.174	5	7
015	2.118	2.118	8	6
222	2.102	2.103	24	27
303	2.050	2.050	4	4
223	1.944	1.944	18	19
205	1.934	1.933	9	8
006	1.898	1.899	6	7
215	1.833	1.833	10	9
224	1.771	1.772	2	2
410	1.741	1.742	13	13
033	1.715	1.715	12	15
230	1.701	1.701	4	5
231	1.683	1.682	6	6
412	1.667	1.666	4	2
403	1.646	1.647	10	10
232	1.630	1.630	6	7
216	1.617	1.618	8	8
225	1.607	1.606	7	7
026	1.586	1.586	7	8
134	1.557	1.557	2	2
126	1.550	1.550	3	2

TABLE II THE X-RAY POWDER PATTERN OF BRAREO

least-squares refinement of the cell parameters yields e.s.d.'s that are unacceptably large when compared with those obtained for Ba₂ReO₅; the final values of the cell parameters are a = 8.65(1) and c = 8.34(2) Å. However, by comparison with the powder

FIG. 2. The infrared spectrum of Ba₂ReO₅. The ν (ReO₄) peak shows the presence of Ba(ReO₄)₂ arising from partial hydrolysis of the product in the CsI disk.

pattern of $Ba_3WO_6(21)$, it seems likely that the structure is a distorted form of the cryolite structure, and the two strong bands at 390 and 600 cm⁻¹ in the infrared spectrum

TABLE III

The X-Ray Powder Pattern of Ba₃ReO₆

hlia	d_{obs}	d_{calc}	(1007/T).
	(A)	(A)	(1001/1 ₀ /obs
111	4.940	4.935	17
200	4.328	4.327	6
121	3.511	3.511	6
Unindexed	3.327		15
220	3.050	3.059	100
202	3.005	3.003	93
131	2.599	2.599	9
113	2.529	2.531	6
302	2.379	2.372	5
Unindexed	2.209		14
400	2.159	2.162	19
004	2.082	2.085	9
242	1.758	1.754	20
224	1.722	1.722	10
151	1.660	1.660	11

^a Lines indexed according to Sleight's tetragonal cell: a = 8.65, c = 8.33 Å.

FIG. 3. The infrared spectrum of Ba₃ReO₆.

(Fig. 3) indicate the octahedral coordination of rhenium expected in this case. It is possible that more than one phase of Ba_3 ReO₆ is present as suggested by Scholder and Pfeiffer (10).

 $Ba_3Re_2O_9$, Ba_2ReO_5 , and Ba_3ReO_6 all contain the octahedral ReO₆ moiety, and the stability of Re(VI) in these compounds, in contrast with the oxidation states of IV to V found in the reduced rare earth and posttransition metal rhenium oxides, is attributed to the presence of Re–O π -bonding in and between these units. Pi-bonding due to the mixing of transition metal t_{2g} and oxygen $p\pi$ orbitals has been established in ReO_3 and transition metal oxides with the perovskite structure (22). Kamata and Nakamura (23) have shown that for perovskite compounds ABO_3 , the covalency of the B-O-B bonding is closely related to the Coulomb potentials due to the A and B cations. The charge/radius ratio of the A cation is a measure of the disturbance of the covalent B-O bonding by A. A related argument applied to the rare earth and bismuth rhenium oxides, where the acidity of the A cation is greater than that on Ba²⁺, may explain why the reduced compounds in these systems are stabilized by Re–Re bonding rather than by Re–O π -overlap (4, 5).

In the three reduced barium rhenium oxides, a low O/Re ratio gives rise to a structure of high connectivity: in Ba₃Re₂O₉ each ReO₆ octahedron shares three oxygen atoms with three other octahedra, whereas chains of cis-linked octahedra are present in Ba₂ReO₅ and Ba₃ReO₆ contains isolated ReO₆ units. Unlike the perovskite-related structures of Ba₃Re₂O₉ and Ba₃ReO₆, Ba₂ ReO₅ does not have a close-packed structure (24).

The powder neutron diffraction data obtained from Ba₂ReO₅ in the range $28^{\circ} < 2\theta$ $< 123.5^{\circ}$ were analyzed using a version of the Rietveld profile analysis program (25). The data were contaminated by trace amounts of Re metal in the sample, and the affected region of the profile was excluded from the structure refinements, as were the low-angle, asymmetric peaks. The structure was refined from a starting model with the atomic coordinates of $K_2VO_2F_3$ (18); the scattering lengths used were those supplied by Bacon (26). Least-squares refinement of 13 positional parameters, 3 isotropic temperature factors, and the usual profile parameters gave a weighted profile R-value of 9.82%. Details are given in Table IV and the observed, calculated, and difference profiles are plotted in Fig. 4. The cell parameters (space group Pnma) refined to give the following values: a = 7.3233(2), b = 5.7745(1), c = 11.4124(2) Å. The final atomic coordinates and temperature factors are listed in Table IV, and the bond lengths and bond angles are given in Table V.

The structure of Ba₂ReO₅ is shown in Figs. 5 and 6. ReO₆ octahedra share two adjacent vertices to form infinite cisbridged chains running parallel to the *b*-axis between 10 coordinate Ba atoms. This is isostructural with Rb₂CrF₅ (27), Rb₂FeF₅ (28), Cs₂DyCl₅ (24), and of course K₂VO₂ F₃; K₂VOF₄ (29) and (NH₄)₂VOF₄ (30) crystallize in the noncentrosymmetric form

TABLE IV

DETAILS OF THE REFINEMENT AND FINAL ATOMIC POSITIONS AND ISOTROPIC TEMPERATURE FACTORS FOR Ba₂ReO₅

Spa a = Gau No No No R _{pr}	acce group: P_{l} = 7.3233(2), l ussian half-w V = -4045(1') of reflection of data point of parameter = 9.18%;	ma b = 5.7745(1), vidth parameter $74), W = 3594ns: 227nts: 1822ers: 24R_{wpr} = 9.3$	c = 11.4124 ers: $U = 202$ 4(76) 82%	4(2) Å 23(94),
R _{ex}	p = 9.66%;	$\chi^2 = 1.0$	3	
Atom	x/a	y/b	z/c	B (Å ²) ^a
Ba(1)	0.0252(5)	0.25	0.2136(3)	0.89(5)
Ba(2)	0.3319(6)	0.25	0.9213(3)	0.89(5)
Re	0.3261(3)	0.25	0.5664(2)	0.47(4)
O(1)	0.3272(3)	-0.0123(4)	0.1189(2)	0.94(3)
O(2)	0	0	0	0.94(3)
O(3)	0.2218(4)	0.25	0.4136(3)	0.94(3)
O(4)	0.4771(5)	0.25	0.6920(3)	0.94(3)

TABLE V

ROND	LENGTHS	(A) AND	ROND	ANGLES	(0)	FOR
		Ba_2Rc	eO5			

			-		
		2× Re	-O(1)	1.872(3)	_
		$2 \times \text{Re}$	-O(2)	2.069(2)	
		Re	-0(3)	1.810(4)	
		Re	-O(4)	1.904(4)	
2×	Ba(1)-O(1)	2.837(4)	2× B	a(2)-O(1)	2.717(4)
2×	Ba(1) - O(1)	2.890(4)	$2 \times B$	a(2) - O(1)	2.886(4)
2×	Ba(1)-O(2)	2.839(4)	$2 \times B$	a(2) - O(2)	2.966(4)
	Ba(1)-O(3)	2.654(6)	$2 \times B$	a(2)–O(3)	2.915(6)
	Ba(1)-O(3)	2.698(6)	B	a(2) - O(4)	2.825(5)
2×	Ba(1)-O(4)	2.898(5)	B	a(2)–O(4)	2.902(5)
	O(1)-	Re-O(1)	94.3		
	O(1)-	Re-O(2)	88.6	(cis), 176.5	(trans)
	O(1)-1	Re_O(3)	96.5		
	O(1)-	Re-O(4)	93.0		
	O(2)-	Re-O(2)	88.5		
	O(2)-1	Re-O(3)	85.1		
	O(2)-2	Re-O(4)	84.9		
	O(3)-1	Re-O(4)	166.0		
	Re-O	(2)-Re	180.0		

^a The temperature factors of barium and oxygen atoms, respectively, were constrained to be equal.

Note. Estimated standard deviation in bond angles is 1° .

FIG. 4. The observed (dots), calculated (continuous line), and difference profiles for Ba_2ReO_5 . Reflection positions are shown as bars. $\lambda = 1.909$ Å.

of this structure. Although this is one of the four main structure types presently known for A_2MF_5 fluorides, this is the first time the structure has been confirmed for a ternary oxide. Both cis and trans configurations of the MF_5 chain are known in A_2MF_5 fluorides. The K₂FeF₅-type structure (31) has cis chains similar to those in Ba₂ReO₅, but the repeat unit of the chain contains eight, instead of two, octahedra; in comparison, trans chains are present in Tl₂AlF₅ (32) and (NH₄)₂MnF₅ (33).

In Ba₂ReO₅, the Re-O(2)-Re angle is 180°, as is the case for all centrosymmetric structures of the K₂VO₂F₃ type. By contrast, the bridging Fe-F-Fe angles in the cis chains of K₂FeF₅ range from 162.0 to 173.4°, with an average value of 170.4°. The angle of 180° in Ba₂ReO₅ is taken to indicate π -bonding between adjacent Re atoms via

FIG. 5. The structure of Ba_2ReO_5 , showing the cis chains of corner-sharing ReO_6 octahedra running parallel to *b*.

FIG. 6. Schematic structure of Ba_2ReO_5 looking along the direction of the cis-bridged chains. Barium positions are shown as open circles.

the bridging oxygen, as in the linear $[Cl_5Re-O-ReCl_5]^{4-}$ anion (34). Like Ba₃Re₂O₉ (6), Ba₂ReO₅ has a high room-temperature resistivity ($\rho \sim 10^7 \Omega$ cm), which is no doubt a consequence of the orthogonality of the Re t_{2g} orbitals required to take part in π -bonding to cis oxygen atoms.

As expected from the structures of Rb_2 CrF₅ and Cs₂DyCl₅, the Re-O (bridging) bond length (2.069(2) Å) is the longest Re-O distance in the ReO₆ octahedron. The Re-O(3) and Re-O(4) bonds bend toward the longer Re-O(2) bridging bonds so that the angle O(3)-Re-O(4) is 166.0°; cf. 174.43° in Rb₂CrF₅, 166.4° in CsDyCl₅, and 156.3° in the more distorted oxyfluoride K₂ VO₂F₃. The Re-O(3) bond length (1.810(4) Å) is significantly shorter than the other Re-O (terminal) bonds, and this may be indicative of an antiferroelectric displacement in the ReO₆ octahedron, as seen in NbO₂ (35). Overall the average Re–O bond length in Ba₂ReO₅ is 1.933 Å, which is comparable to previously determined values in other Re(VI) compounds: 1.875 Å in ReO₃ (36), 1.961 Å in Ba₃Re₂O₉ (6), and 1.923 Å in Ca₃ReO₆ (37).

Acknowledgments

We are grateful to the SERC for a studentship (D.M.T.) and the provision of neutron diffraction facilities at ILL, Grenoble. We also thank J. P. Attfield for collecting the neutron data.

References

- 1. C. C. TORARDI AND R. E. MCCARLEY, J. Solid State Chem. 37, 398 (1981).
- C. C. TORARDI AND J. C. CALABRESE, Inorg. Chem. 23, 3281 (1984).
- 3. C. C. TORARDI AND R. E. MCCARLEY, J. Amer. Chem. Soc. 101, 3963 (1979).
- 4. G. BAUD, J.-P. BESSE, M. CAPESTAN, AND R. CHEVALIER, Ann. Chim. (Paris) 7, 615 (1982).
- A. K. CHEETHAM AND A. R. RAE SMITH, Mater. Res. Bull. 16, 7 (1981).
- B. L. CHAMBERLAND AND F. C. HUBBARD, J. Solid State Chem. 26, 79 (1978); C. CALVO, H. N. NG, AND B. L. CHAMBERLAND, Inorg. Chem. 17, 699 (1978).
- P. C. DONOHUE, J. M. LONGO, R. D. ROSEN-STEIN, AND L. KATZ, *Inorg. Chem.* 4, 1152 (1965).
- J. M. LONGO, P. M. RACCAH, AND J. B. GOOD-ENOUGH, Mater. Res. Bull. 4, 191 (1969).
- I. WENTZELL, H. FUESS, J. W. BATS, AND A. K. CHEETHAM, Z. Anorg. Allg. Chem. 528, 48 (1985).
- R. SCHOLDER AND P. P. PFEIFFER, Angew. Chem. Int. Ed. Engl. 2, 265 (1963).
- E. A. BOUDREAUX AND L. N. MULAY, in "Theory and Applications of Molecular Paramagnetism," p. 154, Wiley, London (1976).
- R. SCHOLDER AND K. L. HUPPERT, Z. Anorg. Allg. Chem. 334, 209 (1964).

- 13. J. M. LONGO, L. KATZ, AND R. WARD, Inorg. Chem. 4, 235 (1965).
- 14. E. J. BARAN, G. BAUD, AND J.-P. BESSE, Spectrochim. Acta, Part A 39, 383 (1983).
- W. FREUNDLICH AND A. DESCHANVRES, C.R. Acad. Sci. Paris 245, 1809 (1957).
- A. K. CHEETHAM AND A. J. SKARNULIS, Anal. Chem. 53, 1060 (1981).
- A. K. CHEETHAM, A. J. SKARNULIS, D. M. THOMAS, AND K. IBE, J. Chem. Soc., Chem. Commun., 1603 (1984).
- R. R. RYAN, S. H. MASTIN, AND M. J. REISFELD, Acta Crystallogr., Sect. B 27, 1270 (1971).
- 19. E. J. BARAN, Monatsh. Chem. 107, 1327 (1976).
- A. W. SLEIGHT, J. LONGO, AND R. WARD, *Inorg. Chem.* 1, 245 (1962).
- 21. E G. STEWARD AND H. P. ROOKSBY, Acta Crystallogr. 4, 503 (1951).
- A. FERRETTI, D. B. ROGERS, AND J. B. GOOD-ENOUGH, J. Phys. Chem. Solids 26, 2007 (1965).
- 23. K. KAMATA AND T. NAKAMURA, J. Phys. Soc. Japan 35, 1558 (1973).
- 24. G. MEYER, Z. Anorg. Allg. Chem. 469, 149 (1980).
- 25. H. M. RIETVELD, J. Appl. Crystallogr. 2, 65 (1969).
- G. E. BACON, "Neutron Diffraction," 3rd ed., Oxford Univ. Press, Oxford (1975).
- C. JACOBONI, R. DE PAPE, M. POULAIN, J. Y. LE MAROUILLE, AND D. GRANDJEAN, Acta Crystallogr., Sect. B 30, 2688 (1974).
- A. TRESSAUD, J. L. SOUBEYROUX, J. M. DANCE, R. SABATIER, P. HAGENMULLER, AND B. M. WANKLYN, Solid State Commun. 37, 479 (1981).
- 29. K. WALTERSSON AND B. KARLSSON, Cryst. Struct. Commun. 7, 459 (1978).
- 30. P. BUKOVEC AND L. GOLIC, Acta Crystallogr., Sect. B 36, 1925 (1980).
- M. VLASSE, G. MATEJKA, A. TRESSAUD, AND B. M. WANKLYN, Acta Crystallogr., Sect. B 33, 3377 (1977).
- 32. C. BROSSET, Z. Anorg. Allg. Chem. 235, 139 (1937).
- 33. D. R. SEARS AND J. L. HOARD, J. Chem. Phys. 50, 1066 (1969).
- 34. J. C. MORROW, Acta Crystallogr. 15, 851 (1962).
- A. K. CHEETHAM AND C. N. R. RAO, Acta Crystallogr., Sect. B 32, 1579 (1976).
- 36. A. MAGNÉLI, Acta Chem. Scand. 11, 28 (1957).
- 37. A. K. CHEETHAM AND D. M. THOMAS, unpublished results.